

1/ HDCold[®]: Reduktion von Gewichtsverlusten 2/ INNO-STOCK: Strategien vor und nach der Ernte zur Bekämpfung von Lagerkrankheiten

S. Gabioud Rebeaud et al.

20./21.08.2025

1/ HDCold®: Reduktion von Gewichtsverlusten

S. Gabioud Rebeaud, M. Cachat-Terrettaz, A. Le Bourgeois, A. Zwickert-Garach, S. Köchli, P.Y. Cotter and D. Christen



U Kontext

- Früchte sind lebende Produkte, die nach der Ernte Wasser verlieren, insbesondere bei niedriger relativer Luftfeuchtigkeit.
- Hohe Wasserverluste können führen zu:
 - > Qualitätsminderung der Früchte (Schrumpfung, Welke, Verlust der Textur, ...)
 - > Wertverlust der Früchte auf dem Markt
 - > Verlust verkaufsfähigen Gewichts
 - > Geringeren Einnahmen für alle Akteuren der Lieferkette

U

HDCold®-Verdämpfer (DPKL, Frankreich)

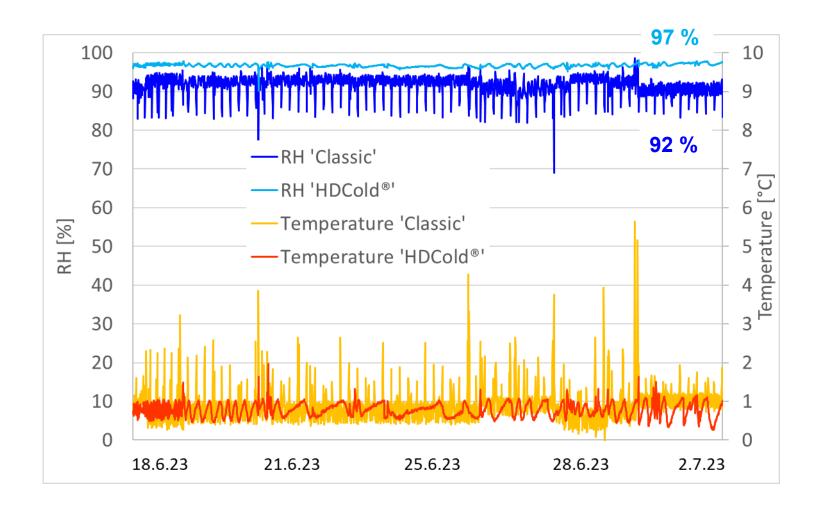
- Ermöglichen Lebensmittel bei **hoher Luftfeuchtigkeit** ohne Wasserzugabe oder Abtauen bei positiver Kälte zu lagern.
 - ➤ Laufen in **normaler** und **kontrollierter** Atmosphäre (KL und CA)
 - > **Begrenzen** Temperaturschwankungen
 - > Reduzieren erheblich Kondensationserscheinungen
 - > Ermöglichen **Energieeinsparungen**
- In 2022 wurden 3 Kühlräume der Agroscope in Conthey mit HDCold® ausgestattet.

U

Versuche mit Äpfeln, Birnen, Kirschen und Aprikosen

- Kann die HDCold® -Technologie den Gewichtsverlust nach der Ernte reduzieren, ohne die Qualität negativ zu beeinflussen oder die Entwicklung von Fäulnis zu fördern?
- Lagerung in KL und CA (nur für Kernobst) bei 1 °C
 - (1) Klassische Verdämpfer
 - (2) HDCold[®]-Verdämpfer
- Einfluss evaluiert auf:
 - Gewichtsverlust
 - Qualität (Festigkeit, Zuckergehalt, Säuregehalt und Farbe)
 - Parasitäre Krankheiten
 - Physiologische Krankheiten (Aufplatzen und Schalenbräune)

Früchte	Atmosphäre Lagerdaue		
Äpfel	KL	6-7 Monate	
	CA	8 Monate	
Birnen	KL	7 Monate	
	CA	8 Monate	
Kirschen	KL	2 Wochen	
Aprikosen	KL	2 Wochen	



Stabilere relative Luftfeuchtigkeit und Temperatur mit HDCold®

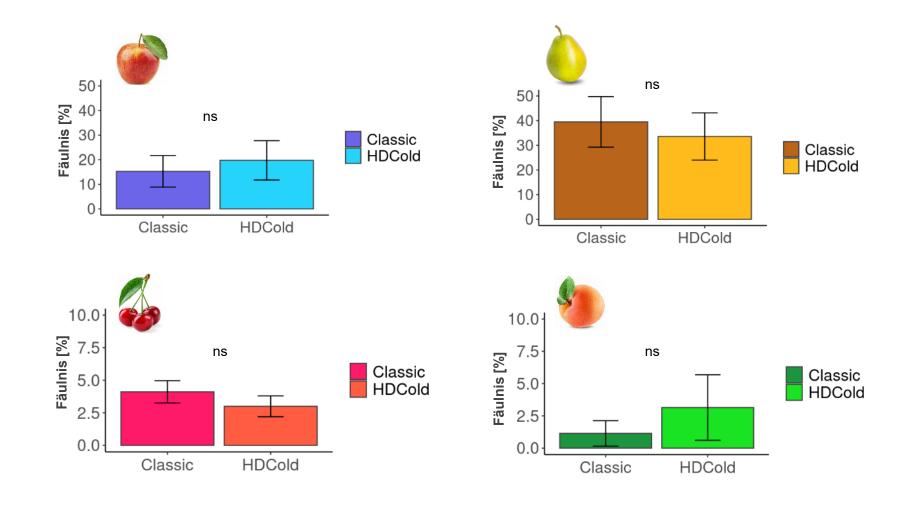
Messungen mit Temperatur-/RH-Fühlern (Rotronic, Schweiz)

U

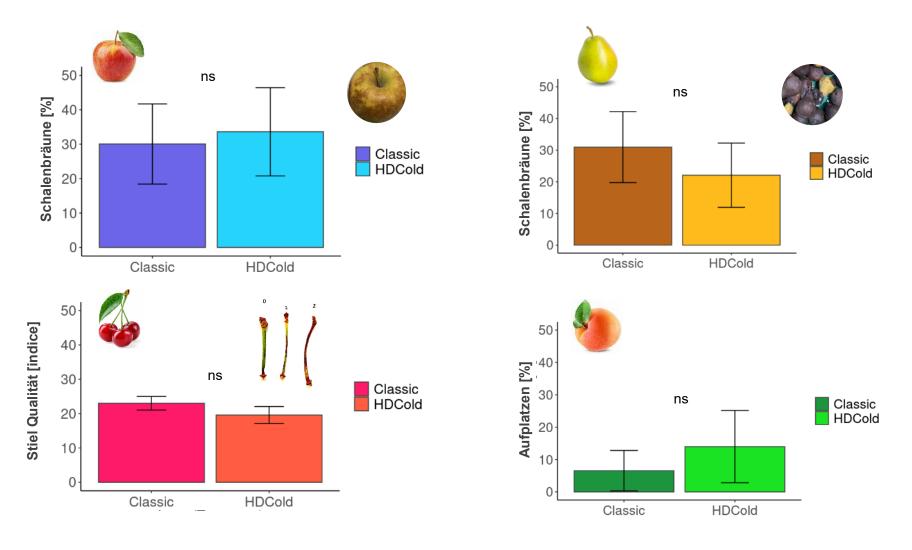
Gewichtsverluste mit HDCold® stark begrentzt

	Durchschnittlicher Gewichtsverlust [%]	
	CA	KL
Classisch	2.1 ^a -43%	3.4 ^a -26%
HDCold [®]	1.2 ^b	2.5 ^b

	Durchschnittlicher Gewichtsverlust [%]	
Classisch	4.1 ^a -32 %	
HDCold [®]	2.8 ^b	


	Durchschnittlicher Gewichtsverlust [%]	
	CA	KL
Classisch	6.4 ^a	7.4 ^a
HDCold [®]	3.3 ^b -48%	5.5 ^b -26%

	Durchschnittlicher Gewichtsverlust [%]	
Classisch	5.1 ^a	
HDCold [®]	3.2 ^b -37 %	


→ Kein Einfluss auf Festigkeit, Zuckergehalt, Säuregehalt und Farbe

HDCold[®] hat die Fäulnis nicht gefördert

Einfluss von HDCold[®] auf physiologische Krankheiten hängt von der Obstsorte ab

USchlussfolgerungen

- HDCold® hat die relative **Luftfeuchtigkeit** und **Temperatur stabil** erhalten.
- Die relative **Luftfeuchtigkeit** blieb auf einem **hohen Niveau** (97-98 %).
- HDCold® hat die **Gewichtsverluste** von allen Früchten **stark reduziert**, ohne die **Qualität negativ zu beeinflussen** oder die **Entwicklung von Fäulnis zu fördern**.
- HDCold® hat tendenziell das **Schalenbräune** bei Birnen limitiert, jedoch nicht bei Äpfeln.
- Bei empfindlichen Sorten kann das **Aufplatzen** von Aprikosen durch HDCold[®] verstärkt werden.

2/ INNO-STOCK: Strategien vor und nach der Ernte zur Bekämpfung von Lagerkrankheiten

Agroscope: S. Gabioud Rebeaud, M. Cachat-Terrettaz, S. Köchli, R. Salamin, P.Y. Cotter

and D. Christen

FiBL: F. Araldi, R. Sonnard, C. Boutry, A. Bernasconi and H.J. Schärer

Mit finanzieller Unterstützung des BLW

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

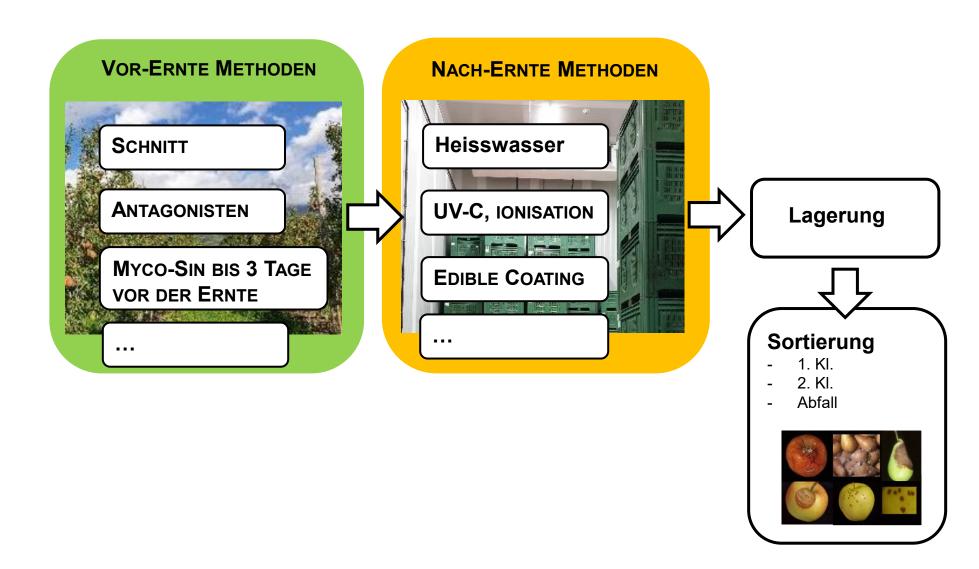
> Bundesamt für Landwirtschaft BLW Office fédéral de l'agriculture OFAG Ufficio federale dell'agricoltura UFAG Uffizi federal d'agricultura UFAG

In Zusammenarbeit mit

V Kontext

- Je nach Produktionsjahr können **parasitäre Krankheiten** für Lagerbetriebe ein grosses Problem darstellen, besonders im **Bio Obstbau**.
- Resistente Sorten (z.B. gegen Schorf, Feuerbrand) verringern im Anbau zwar bestimmte Krankheitsprobleme, führen jedoch nicht automatisch zu einer besseren Lagerfähigkeit.
- Verringerung/Verbot von synthetischen Pflanzenschutzmitteln
 - + Zunahme der Häufigkeit von extremen Wetterereignissen
 - → Zunahme der Lagerkrankheiten

INNO-STOCK Projekt:


Ziel: Innovative Methoden/Strategien vor und nach der Ernte testen und validieren, um Lagerkrankheiten zu reduzieren.

- On-farm/station Versuche
- Experimentelle Lagerversuche

Versuche mit der Praxis

Experimentelle Lagerversuche

Agroscope (Conthey)

Heisswasser

Ionisierung

PERFECT ATMOSPHERE

Ozon-Behandlung

UV-C Strahlung

Edible coating

AgroSustain •••
Natural plant protection

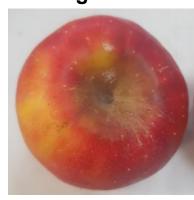
Baxoda[®]

Natriumhydrogencarbonat

Q

Häufige parasitäre Lagerkrankheiten in den Versuche 2023-25

Infektion vor der Ernte:


Lentizellen-Fäule

Lagerschorf

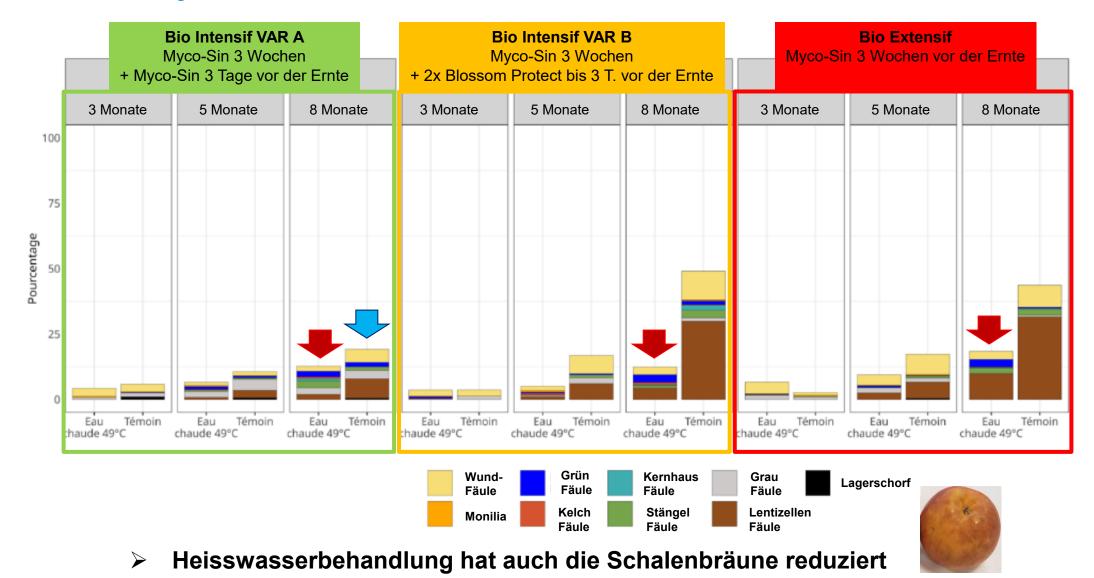
Stängelfäule

■ Infektion vor/während der Ernte oder während der Lagerung («Wundparasite»):

Grünfäule

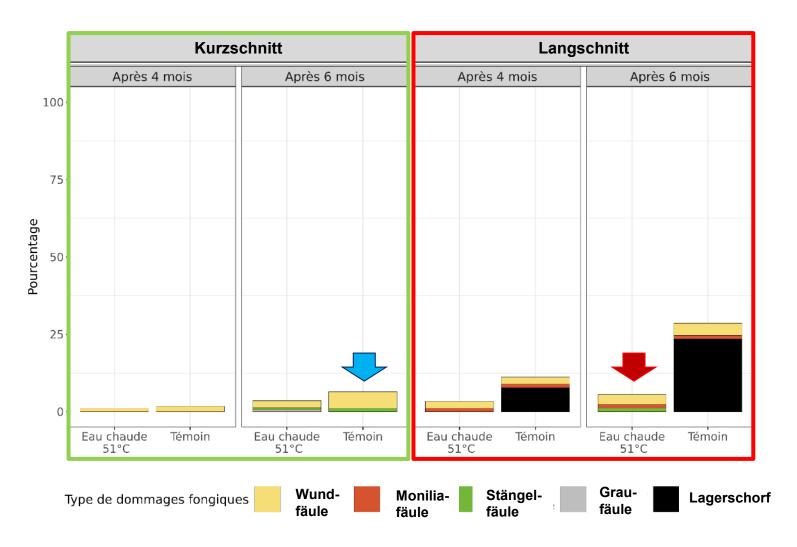
Graufäule

Unbestimmt



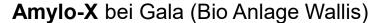
Weniger Lentizellen-Fäule mit Myco-Sin* und Heisswasserbehandlung

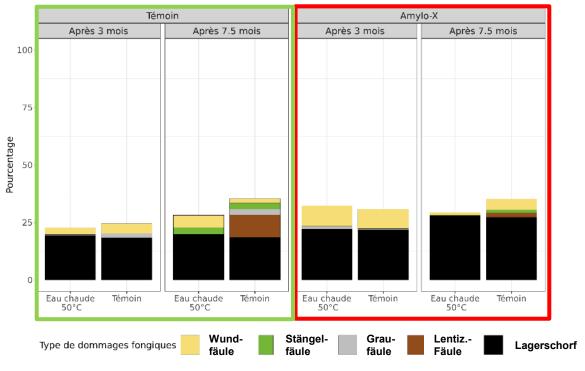
Ladina (schorfresistent und feuerbrandtolerant, Bio Obstanlage UFL, Waadt)


* bis 3 Tage vor der Ernte

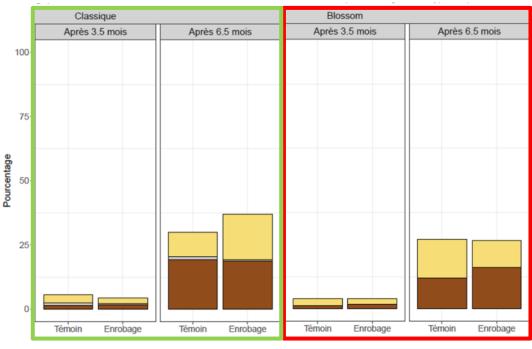
Weniger Lagerschorf mit Kurzschnitt und Heisswasserbehandlung

Scifresh/Jazz® (Bio Anlage Wallis)



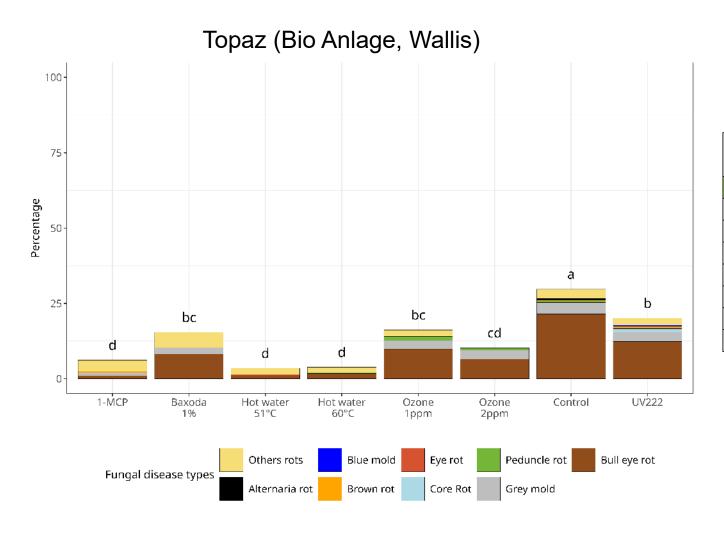


Heisswasserbehandlung hat die Schalenbräune gefördert


V

Keine Auswirkungen der getesteten Antagonisten und Edible Coating

Blossom Protect bei Ariane (Bio Anlage Luzern)



Antagonisten haben sich während der Lagerung vermehrt

Q

Nacherntemethode: je nach Verfahren positive oder negative Auswirkungen auf Fäulnis, physiologische Schäden und Qualität

	Schalenbräune [%]	Phytotoxicität [%]	Festigkeit [kg/cm2]
Kontrolle	10	0	4.8
1-MCP	3	0	5.1
Heisswasser_51	19	0	4.4
Heisswasser_60	16	0	4.4
Ozon 1 ppm	18	0	4.6
Ozon 2 ppm	17	0	4.5
Baxoda	19	22	4.7
UV-C	9	0	4.8

U

Schlussfolgerungen

Vorernte Methoden

- Myco-Sin bis 3 Tage vor der Ernte: (১) vor jedem Regen behandeln, weitere Versuche nötig
- Kurzschnitt: \>
- Antagonisten: Ø
- Kaolin: (Ø), weitere Versuche nötig

Nachernte Methoden

- Heisswasser: ➤ Lentizellenfäule/Lagerschorf

 Z Schalenbräune
- Edible coating : Ø
- lonisierung (lonny®):
 ☐ Grün-, Graufäule, Epiphyten
- Ozon:
 \(\sigma \) Cadophora-, Lentizellen- F\(\alpha \) Undf\(\alpha \) Undf\(\alpha \) Undf\(\alpha \) Phytotoxicit\(\alpha \), Glasigkeit
- **Baxoda**®**:** Ø, *>* Phytotoxicität
- UV-C Strahlung: Ø, weitere Versuche nötig

- ➤ Projekt läuft weiter (→ 2027)
- > Technische, wirtschaftliche und regulatorische Machbarkeit auch evaluiert.

severine.gabioud@agroscope.admin.ch

